
August 2022
Robbert Naastepad, Jakub Fila,
Jens Müller, Vincent von Hof

How to Build, Implement,
and Leverage a Successful Data
Architecture Using Data Mesh
Architecture Pattern:

A View from the BCG Platinion
and Teradata Cooperation.

As a part of Boston Consulting Group (BCG),
BCG Platinion provides consulting & engineering
services in human centric design, IT architecture,
development, and implementation of
advanced technology solutions that fuel critical
transformation and creation of new-generation
business models. Today, our presence spans the
globe with offices in Europe, North and South
America, South Africa, and Asia Pacific.

3

Data mesh is currently a heavily discussed topic, as it is
perceived as game changer in data architectures. However,
it is often misunderstood as a concept, as are its conse-
quences.

What is data mesh, then? It is a shift in architectural and
business usage paradigm that reorients data architecture
from general towards business-specific to a company.

It is, however, not a remedy for every issue, nor a silver
bullet to solve any fundamental data problem. Let’s start
the article with an honest look at what data mesh really
is, and what it is not.

Data mesh IS: A client-centric way of organizing data
and data interfaces for efficient and business-aligned
consumption and monetization of the data. It serves
business domains with relevant, timely, and high-quality
data views and perspectives packaged as business-relevant
data products or services. It shifts the paradigm of design-
ing data architecture to business derived and business
oriented. It is also a way of deconstructing a highly
entangled or coupled, monolithic data architecture into
a domain-oriented architecture, delivering on the premise
of so-called self-service. Decentralization and federated
governance are concepts at the center of this architectural
style, enabling its usability and adaptability.

Data mesh IS NOT: A replacement for a data warehouse,
data lake, or data lakehouse, nor is it a substitute for a
properly designed data integration or a remedy for poor
data management at the back end or in core systems.
It is not a magic key for data to organize itself in an
organization that has no proper data organization
and lineage between its systems and repositories.

Data Mesh SHOULD NOT: Be confused with Data Fabric.
Although both are data management architectures, a
data mesh produces data products specific to (business)
domains. A data fabric produces many data artifacts of
which a data product can be one. Where a data fabric is
a more technical focused architecture, data mesh tends to
lean more towards the organization of data management
and is an information architecture. The data fabric center
is metadata, that of a data mesh is the domain.

1. Data mesh:
A new approach building on
existing technology foundations

1.1 Principles of data mesh

In a canonical design of data mesh,
five principles need to be highlighted:

Each of these plays a vital role in building
the value of a data mesh solution, as data
mesh is more a business philosophy than

a pure technical concept.

3. Self-service

1. Domain orientation

4. Federated governance

2. Data as a product

5. Agility

4

Domain orientation
Data is organized across domains, with clear domain own-
ership from operational sources and (optional) centralized
data to dispositive data consumption. The examples might
be party/client/partner domain or deposits domain in the
banking area. Each defines its main business objects, data
describing them, and ways the data is served, also involving
direct owners in the process of defining the domain.

Data as a product
Data cataloging should allow discovery of the data
by its consumers and stakeholders. APIs that operate
on a self-service premise ensure interoperability of the
data products. Data quality is declared in data delivery
agreements. Data products are simply a concept, and the
implementation of data entities and the services enabling
them. They typically form a group of business-meaningful
data objects that are served and operated. As an example
of a product: Contracts in the service provider company
would cover all business-relevant information on contract-
ual agreements with the company’s clients, providing
insight into the data as well as potentially manipulating
the data. The products can be built as raw business
semantics on the data, or they can build on other,
more fundamental products.

The products are typically delivered and developed
further using an agile approach, with data ownership
and a product team established for each of them.

Data product teams typically develop the technical compo-
nents needed to extract, load, transform, store, publish,
and disclose the data. The data is accessible by means
of data or service contracts, and the services providing
them operate at scale. Data consumers only need to know
the contract and endpoint to be able to identify the client.

In existing data architectures, technical components are
often set in stone and managed by a centralized team.
The interaction with that team is a quintessential require-
ment. Data owners must await their support before they
can proceed. In self-service architectures, the data owners
can shape the products themselves, deciding how the data
will be served and consumed.

Self-service

The data is harmonized in a centralized fashion using data
catalogs, along with metadata management solutions for
common discovery, consumption, and interoperability. Data
product teams have significant freedom (within the frame-

work of central principles) to build data assets allocated in
domains in the most efficient way, matching the specificity
of the domain. Computational governance is in place to
enforce the data delivery agreements.

Federated governance

Canonical agile methodology and organization, combined
with a set of data-specific capabilities, provide the tools
needed to build a data mesh. DataOps provides a frame-
work for the automated and scalable dev-test-deploy of

various data assets. Obviously, agile methodologies have
proved useful for other, older styles; however, data mesh
benefits directly from them, as self-service and domain
orientation are best aligned with them.

Agility

5

1.2 Architectural concepts
that support data mesh
Data mesh as a concept is fresh, but elements of the idea
have existed long before now, as have the tools. It is the
assembly of the concepts that reorients the data architec-
ture towards business services and provides business
domains with the most relevant support. The applicable
concepts, which will be explained in the following, are:

Domain-driven design
Domain-driven design is the most fundamental underlying
paradigm. It was formulated by Eric Evans to support mo-
deling and implementation of business services grouped
by specific business areas referred to as domains. For the
data mesh, the data domain concept is often used to re-
flect the data specificity of the architecture; nevertheless, it
is useful to maintain a holistic view on the domain as such.

Microservice architecture
As a way of deconstructing IT systems into loosely coupled
parts that support very specific business services and can
also be extended and scaled independently of the other
chunks, microservice architecture allows service implemen-
tation to be specialized towards defined business services
and to optimize its design.

Although data mesh patterns would typically benefit from
the use of a microservice architecture, it is not a must and
other application patterns can be considered that would
work equally well. The main issue is to make them work
with data mesh.

API-driven integration
This is an integration pattern that connects the application
using high-level APIs that are typically implemented as
RESTful services using an http protocol. Quality APIs are
usually self-descriptive, cover a specific business area,
and offer it as a service. They are manageable and allow
for loose couplings between the applications and systems.

In fact, various types of APIs and API usage are conceivable
for data mesh (see below); the one best fit for the specific
purpose should always be used. However, RESTful API is
one of one of the most versatile ways of communicating
with the data or service platform.

Resource-oriented architecture
Resource-oriented architecture presents resources rather
than behavioral APIs or services. A single resource (e.g.,
current account) exposes all the operations permitted on
it, such as read, modify, create a new one, etc. The resource
is typically well defined and implements a clear and rele-
vant business term.

Combining the four paradigms mentioned above allows
for defining and creating data domains, supporting them
with properly designed and implemented microservices,

and publishing/consuming data through well-defined,
business-meaningful services. All of the paradigms have
been known for some time, while the data mesh concept
is just a glue that allows them to cooperate to provide
business view of the data.

Obviously other choices such as event publishing are also
viable and can be implemented depending on the needs
and chosen patterns.

Domain-driven design

Microservice architecture

API-driven integration

Resource-oriented architecture

6

2. Data mesh versus data
warehouse versus data lake
Data mesh is a functional and behavioral paradigm
that puts data consumers at the center of the architecture.
It can be implemented in several ways, using different
concepts for organizing source data as well as various
integration and enablement patterns. Each of the three
architecture styles address different business problems:

Data warehouses have been here for many years, serving
mostly as a structured source of (largely but not exclusive-
ly) structural data, as well as data for reporting, consoli-
dating history, sometimes keeping general ledgers, etc.
Their premise is to centralize the data in a single source
of truth for the organization.

Data lakes were created to enable capabilities to mass
process, store, and categorize the unstructured high vol-
ume, velocity, and veracity of data. If the data warehouse
pattern is typically schema on write, the data lake pattern
is schema on read, making high data volumes available
quickly.

Data warehouses and lakes are often combined in a
so-called lakehouse that offers the capabilities of both.
Although seasoned, they are not obsolete.

Data mesh, on the other hand, is all about self-service and
decoupling enterprise data management and consumption
into simpler and less entangled data products.

Data mesh as such is not a direct replacement of a central-
ized data source such as a data warehouse or data lake.
There are patterns in place that allow seamless collabora-
tion between data mesh and centralized data stores, repre-
senting a single source of truth. In such a case, data mesh
would typically be produced by a consolidated storage layer.
Moreover, there are architectural patterns and data models
that allow a single source of truth to be organized so that it
automatically organizes the data into domains and enables
easy exposure of data mesh as a prevalent consumption
pattern.

There are 3 types of domains:

Source-oriented domain (source domain):

Sourced from enterprise core applications

Facts and reality of business

Immutable timed events / Historical snapshots

Change less frequently

Permanently captured

Consumer oriented domain (consumer domain):

Sourced from data products from source-
oriented domain(s) or integration domain(s)

Fit for consumer purpose

Aggregation / Projection / Transformation

Change often

Can be recreated

Integration domain:

Sourced from data products from source-
oriented domain(s) or consumer domain(s)

Integration over domains

Granularity specific to consumer domains requirements

Change specific to consumer domains requirements

Can be recreated per source domain

7

3. Ways of organizing and sourcing distributed data mesh

Distributed data mesh is not a fixed pattern that can
be implemented in one canonical way. There are at
least two dimensions in which we can make decisions
on its sourcing:

3.1 Ways of organizing schemas
for the distributed data mesh

Federating the development of complex data products
does not automatically imply federating their deployment.
In fact, a range of deployment options are available to
organizations deploying data mesh solutions. Different
strategies are associated with fundamentally different
engineering trade-offs, so it is important that organizations
frame these choices correctly and are intentional about
their decisions.

In general terms, there are three different strategies for
deploying schemas within a data mesh, as defined by
vendors such as Teradata:

These are not mutually exclusive, and many
real-world implementations use a combination
of these approaches.

When using environments such as Teradata Vantage,
the play is between deployment of centralized
image(s) to host collocated domains, host individual
domains, or use Vantage as, e.g., a data platform
gateway to virtualized data from other platforms.

Ways of organizing data (schemas)
and allocating/colocating it

Ways of sourcing the data for
distributed data mesh domains

1.

Isolation

2.

Colocation

3.

Connection

8

3.2 Ways of sourcing or building the data mesh

Of course, the models can be combined to maximize the benefits of data mesh. The condition for a successful
combination of the patterns is consistent federated governance spanning the entire mesh. The Teradata
Vantage platform can be used as a technology to serve any data architecture and is not only capable of
implementing each of these 3 models, but also works in its various parts providing sources, serve as central-
ized repository as well as implement domain repositories delivering data within its bounded context.

There are multiple patterns for building a data mesh, but three in particular deserve a closer look:

A fully independent
model in which
each domain is
sourced independently

Centralized sourcing
with materialization
of the domain

Centralized sourcing
with virtualization of
the domain

Of course, variations that mix the models can and certainly are built and used.

3.3 Fully independent model
Each of the domains is logically separated, from its sourcing to consumption; however, the interoperability
is satisfied by coherent data delivery agreements.

9

The source domain exposes data products to the downstream domains in the form of API’s, databases and
streams that are immutable for everything outside of the domain. The source domain can produce other data
products too.

3.4 Sourcing from the central store
with materialization of the domain
Domains are sourced from the central data store and are typically materialized. Less command is left in the hands of the
data product team assigned to the domain. The central domain platform uses the data lake (nowadays mostly stored on
native objects stores), the lakehouse and data warehouse patterns, whichever is fit for purpose to store data. The data in
it will be aligned on a domain basis, for example in dedicated buckets/accounts/schemas. Domains get a slice of the tech-
nology stack. The concepts of source-, integration- and consumer domains are not strong here; however it is still possible
for domains to consume data products directly from other domains. Integration domains could exist, but most of the time
integration is done on the central data platform. Creating a separate integration domain must be done using good com-
mon sense.

3.5 Sourcing from the central store
with virtualization of the domain
Domains are sourced from the central data store mainly on a virtual basis. The amount of command and control in the
data product team’s hands is similar to that of the previous pattern. A strong understanding of the centralized repository
is needed. What goes for sourcing from the central data platform with materialization of the domain goes for this way of
sourcing building a data mesh too. The central domain platform uses the data lake (nowadays mostly stored on native
objects stores), the lakehouse and data warehouse patterns, whichever is fit for purpose to store data. The data in it will
be aligned on a domain basis, for example in dedicated buckets/accounts/schemas. Domains get a slice of the technology
stack. Virtualization tooling and/or database views support the domain model and its contexts.

The concepts of source-, integration- and consumer domains are not strong here; however it is still possible for domains
to consume data products directly from other domains. The concepts of source-, integration- and consumer domains are
not strong here; however it is still possible for domains to consume data products directly from other domains. Integration
domains could exist, but most of the time integration is done on the central data platform. Creating a separate integration
domain must be done using good common sense.

10

11

4. How to organize the service
landscape to implement data mesh
Data mesh is always implemented using domain-
driven design (DDD). The business areas are divided into
domains, and common functional and model chunks are
closed by bounded contexts as a way to enable data mesh.

Microservices and modern integration and service enable-
ment techniques usually follow, but it is DDD that lays the
foundation for constructing a successful data mesh imple-
mentation.

There are several techniques for subdividing business
capabilities into the domains as well as for construction
those; however, it is fairly easy to single out a stereotype
of the data domain.

4.1 General organization of
architecture layers for data mesh

The domain can contain one or more bounded
contexts. The contexts are usually self-contained but
might overlap with other domains and subdomains.

It takes a very business- and technology-savvy team to
properly deconstruct and design the domain, from busi-
ness services to implementation to a properly distributed

data mesh. Once the culture and routine are there,
however, adding the domains or deconstructing monoliths
into the domains becomes increasingly easy.

In the properly constructed (and DDD-governed) data
mesh solution, the rule is that only the master domain
can change its data. Subordinate domains cannot;
they can only read the master domain’s data. Whenever
a subordinate domain is the master of some data, that
domain is the only authority to change it.

There is also a substantial difference between the concepts
of data and business domains. The first is a provider and
change originator for the data and data products and
can potentially serve business domains as a data product
provider. The second is usually a more behavioral and
transactional concept exposing services for operations on
the business processes and the state of business objects
managed by the organization. Keeping that in mind, one
can notice that the patterns/styles in fact complement
each other.

The data domain usually
consists of several layers:

Deep sources or operational systems that
provide the transactional/operational data

Domain data repositories — typically
responsible for so-called data liberalization

(Micro)services to provide the main
functionalities enabling and operating the data

The data service layer serving data as products

12

4.2 Types of APIs used for data mesh
As stated above, API-driven connectivity is one of the most
logical choices for offering data products. We consider a
couple popular ways to technically share the data in the
following. The volume of data to be exchanged determines
the use of a particular API over the others. Acquisition of

moderate data portions makes direct APIs advantageous,
while querying mass data will always favor direct connec-
tions to the data or bulk file extracts. Those, however,
benefit from being initiated and controlled by API calls.

13

If the company’s IT department has sufficient scale, all
the layers can be built or set up in almost every possible
way, including building from scratch. Most companies are,
however, constrained by the budget, resources, and learn-
ing curve needed to master the skills to prepare all the
layers.

If ready-made supporting platforms are used to limit
the overhead needed to build the solution, the fol-
lowing areas of consideration should be addressed:

Ready-made platforms are available for each of the areas
mentioned. While they do somewhat fact limit the possibil-
ities, they provide a quick starting point and platform that
can be used directly to build and host the data mesh com-
ponents.

The next big step that is likely to emerge or may even
already be on the horizon is data mesh as a service offered
by significant players. There are many we could mention,
but the Teradata Vantage platform has native connections
to sources like native object storage, and when using Tera-
data QueryGrid, this can be extended to Apache Hive and
Apache Spark, Oracle, and Google BigQuery. The Starburst
Presto connector makes it possible to further extend the
connection to a myriad of data engines through Starburst
Presto. This makes the platform a ready-to-use solution
offering a data mesh skeleton that can be integrated, filled
with the data, and provided in the cloud for data clients
to use.

5. Ways of building data
mesh are dependent on the
scale and resources at hand
The decision to build a data mesh requires taking the
most pragmatic approach. There is a list of factors to
be considered ahead of deciding how to implement it:

14

6. Dos and don’ts: When (not)
to implement data mesh
architecture
As with every pattern, there are some limitations and
caveats that need to be taken into consideration when
it is used contradictory to its objectives—and without
considering its limitations it has no chance to deliver
on its premises. Below is a list of major points to consider:

1. Do not treat data mesh as a golden
hammer to solve all your data problems.

2.

Do not try to replace your data warehouse
or data lake with data mesh if they are
properly fulfilling their function—think
about data mesh as an evolutionary step.

3.

If a data mesh style is planned for
implementation, change or evolve both
the technology and data models and
the organization—federated governance,
domain deconstruction, and strict domain
ownership are important.

4.
Do not start with technology—technology
is an enabler, but objectives come from
business definitions of the domains.

5.

Leverage modern service and deployment
patterns such as cloud, data virtualization,
CI/CD, etc. to fully explore deconstructed
and additive models.

7. Teradata as a provider of
core technology to enable
data mesh architecture
Teradata has been around for more than 40 years
now, providing unparallel capabilities in processing
huge amounts of data. It is an original MPP design
that stems from its shared-nothing architecture that

has resolved problems with storing, selecting, and
merging large-scale data sets. Over the years, many
capabilities have been developed around Teradata:

15

Efficient and scalable data integration tools (through
Teradata Parallel Transporter, part of Teradata’s tools
and utilities that come standard with Teradata Vantage)

TASM, a best-in-class workload management solution
that allows workloads of various types (tactical, strategical,
analytical, etc.) to be protected and makes it possible to
meet your SLAs

A scalable cloud offering (Vantage) that allows data
processing solutions to be easily scaled to adapt to
varying workloads (storage and computation intensity)

A heterogenous data integration platform that allows
various technologies to be combined into one data
ecosystem managed from the Teradata Vantage platform

Separate storage and computing, which makes Teradata
Vantage highly suited to adapt cloud capabilities such
as scalability, elasticity, agility, flexibility, and efficiency
in resource usage

Teradata connectors, among others the Teradata Kafka
connector, which makes it possible to use Kafka to stream
data into Vantage

Teradata QueryGrid, which makes it possible to connect
Vantage to a myriad of data engines and understand the
statistics in those data engines. This allows Vantage to
work together with those engines to determine the best
path to your data, thus limiting resource usage

Reading and writing to native object stores (NOS) like
AWS S3, Azure Blob, and ADLS, Google cloud storage, or
on-prem object stores that use the AWS S3 API, making
it possible to use this cheap storage for archiving or event
store purposes

Bring Your Own Model, which makes it possible to score
your models in the database and brings the processing
to the data instead of bringing the data to the processing,
which can be very expensive in the cloud

Running R, Python, and Java in the database, again
bringing the processing to the data. There is no longer a
need to move your data to your R, Python, or Java clients

A robust set of Teradata Vantage ecosystem management
tools, including back and recovery, sandboxing, moving
data, Vantage management, and business continuity
management.

Teradata Vantage supports the data mesh concept in all
three strategies:

16

8. Outlook
The future is now, as numerous communities think and
work on refining and preparing the new patterns. In the
following, the authors speculate on the future evolution

of the data mesh style. Some of the anticipated novelties
are applicable to the other patterns as well and as such
will probably be used widely.

The main predictions concern architecture/technology and
organization/operations. The changes will be reciprocal,
as business changes will create new requirements while,
in turn, advancements in technology and architecture will
enable business and operational advancements.

Data mesh and service
mesh will converge
The two patterns will converge as data mesh will increas-
ingly support transactional and operational activities,
while analytical data will more and more often be
enabled through services defined as APIs or similar.

Middleware will
support data mesh
As mentioned in the previous chapters, the enablement
teams will be more and more fully supported by dedicated
middleware or including data mesh pattern. Services,
integrations, and provisioning of data domains will become
more and more codeless.

Data mesh
platforms as a service
Hyperscalers and traditional analytics repository providers
will start building and advertising data mesh platforms
offered as a service, in a similar turn of events that led
to productized data lakes or lakehouses.

8.1 Technology

17

Data virtualization as
an enabler of data mesh
Data mesh as a pattern is a natural candidate to be ena-
bled by data virtualization tooling—for example, Teradata
QueryGrid. It typically allows for rapid microservice-style
deployment of data domains or domains sets. It seems
logical that this trend will increasingly prevail.

Domain-driven
design sophistication
Domain-driven design is a great enabler of data mesh.
New techniques of breaking business down into domains
and designing the domain will gain ground and DDD will
be automatically linked with the data mesh pattern.

AI/ML will be embedded in
data mesh
A prediction that is relevant for both data mesh and lake-
house or similar patterns assumes that AI and ML will
be embedded in the data platform to properly match
and translate between business and technical semantics.
Ultimately, this would enable an AI-supported fetch of
the results for the queries requested in business language.
Support in the organization of data, use of semantic
graphs, self-organizing structures, and database manage-
ment will also find their application.

8.2 Organization and operations
Organizational and operational changes will enable
development of architectural standards and patterns. The
process of agile methodology-driven convergence of roles
and skillsets will continue. Analysts and data scientists will
acquire technology proficiency, while IT-oriented individuals
will gain more awareness and excellence in the use of
requirements and business process analysis. The teams
are and will continue to become multidisciplinary, typically
organized in tribes or similar structures. Cooperation
between topic- or domain-oriented groups should remove
siloes in organizations, which is the main prerequisite
for federated governance over the data and the domains.

9. Conclusion
Data mesh is a promising but already widely adopted
pattern that allows some significant shortfalls of patterns
used so far to be overcome. It moves the development
closer to the owners and users of the data while retaining
their overall business alignment through federated
—preferably computational—governance.

The market adopts the data mesh concept while the
vendors of IT solutions and service providers develop
data mesh as a service or product.

Data mesh is a style likely to coexist and integrate with
patterns used so far such as data lakes or lakehouses.

It is also typically a driver of organizational and operational
changes in large organizations, leading to more efficient
handling and processing of data.

As a company with 40 years of experience, Teradata was
able to build a concept and products for implementing
large-scale data mesh. Teradata Vantage and Teradata
QueryGrid allow for every data mesh flavor to be
implemented.

BCG Platinion and Teradata partner on projects involving
data mesh (and other patterns), shaping and delivering
support to data-intensive business organizations.

Jakub Fila

BCG Platinion

About the Authors

Robbert started his career as a Cobol programmer on
the IBM MVS operating system, using the IMS-DB/DC
database management system. After using dBase II/III/
III+ and Foxpro, he was introduced to Oracle 6.1.7
RDBMS in 1994.

From that moment on, he got more and more involved
in executive information systems, data warehousing,
and business intelligence. Robbert evolved from
developer and analyst on several projects to technical
architect at Oracle into an enterprise data, and now to
BI and analytics architect at Teradata. He has been a
Teradata team member since January 2017 as he felt
Teradata had the right business strategy and products
to become a leading company in data management for
business intelligence and analytics. Nowadays, Robbert
supports Teradata’s customers and partners in devel-
oping and implementing data architectures using the
Teradata Vantage data platform.

Jakub has a professional background as an aerospace
engineer, first in the turbine engine industry and then
in the nuclear industry. He is a graduate of aerospace
engineering and physics faculties, where he also
learned software engineering and started his interest
in data processing and parallel programming. He has
been working as an IT architect of various levels of
seniority for companies such as Accenture, IBM, or
Teradata. Jakub is now a Principal at BCG Platinion,
helping clients to make strategic decisions and imple-
ment the right technologies to fulfill their strategy.
He specializes in integration architecture, enterprise
architecture, massive data processing, and software
engineering and is an enthusiast in MPP platforms
and efficient parallel programming techniques. Jakub
leads the Application Architecture chapter at BCG
Platinion in the EMESA region. His private interests
lie in aerospace and triathlons.

18

Robbert Naastepad

Teradata

About the Authors

Jens is an engineer to the core. He started by coding
J2EE solutions in financial industries and evolved into
a domain/enterprise architect over the years through
performance measurement and optimization cases,
which helped him to build a thorough understanding
of traditional relational DBMS and their inner workings
(Oracle and DB2). Moving on to strategic IT consulting
in 2006, he explored all aspects of IT management.
The path to data platforms was laid out in pilot cases
on SAS around 2010 and then, from 2012 on, he took
over the role of head of design authority capital mar-
kets at a large German bank, where he substantially
helped set up a data hub based on data lake and
streaming technologies that was later moved to a
cloud native setup. After rejoining BCG Platinion in
2019, Jens took over the Data Architecture chapter
to extend our competences further and work on
(cloud) data platform cases in financial industries.

Vincent is a Senior IT Architect at BCG Platinion and
an engineer by his background and passion. Vincentis
a key member of BCG Platinion’s Data chapter.

Vincent started his career as a software developer
focused on Java and C#, solving data challenges in the
middleware and backend for large-scale data process-
ing and creating data ontologies for the German gov-
ernment, as well as working on solving data challenges
on the opposite scale in constrained environments
on Android, where he led a development team at a
startup for multiple years. He holds PhD in software
engineering, majoring in automated test case
generation. With over 10 years of development
experience, he joined BCG Platinion as an Architect.

His main interests include massive data processing,
software engineering, test automation, and cloud
architecture. Vincent typically leads large data
management projects delivering content and
architecture concepts, and implementing and
aligning business with IT.

Jens Mueller

BCG Platinion

Vincent von Hof

BCG Platinion

bcgplatinion.com

https://bcgplatinion.com/

