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Data mesh is currently a heavily discussed topic, as it is 
perceived as game changer in data architectures. However, 
it is often misunderstood as a concept, as are its conse-
quences.

What is data mesh, then? It is a shift in architectural and 
business usage paradigm that reorients data architecture 
from general towards business-specific to a company.

It is, however, not a remedy for every issue, nor a silver 
bullet to solve any fundamental data problem. Let’s start 
the article with an honest look at what data mesh really 
is, and what it is not.

Data mesh IS: A client-centric way of organizing data 
and data interfaces for efficient and business-aligned 
consumption and monetization of the data. It serves 
business domains with relevant, timely, and high-quality 
data views and perspectives packaged as business-relevant 
data products or services. It shifts the paradigm of design-
ing data architecture to business derived and business 
oriented. It is also a way of deconstructing a highly 
entangled or coupled, monolithic data architecture into 
a domain-oriented architecture, delivering on the premise 
of so-called self-service. Decentralization and federated 
governance are concepts at the center of this architectural 
style, enabling its usability and adaptability.

Data mesh IS NOT: A replacement for a data warehouse, 
data lake, or data lakehouse, nor is it a substitute for a 
properly designed data integration or a remedy for poor 
data management at the back end or in core systems. 
It is not a magic key for data to organize itself in an 
organization that has no proper data organization 
and lineage between its systems and repositories.

Data Mesh SHOULD NOT: Be confused with Data Fabric. 
Although both are data management architectures, a 
data mesh produces data products specific to (business)
domains. A data fabric produces many data artifacts of 
which a data product can be one. Where a data fabric is 
a more technical focused architecture, data mesh tends to 
lean more towards the organization of data management 
and is an information architecture. The data fabric center 
is metadata, that of a data mesh is the domain.

1. Data mesh: 
A new approach building on 
existing technology foundations

1.1 Principles of data mesh

In a canonical design of data mesh, 
five principles need to be highlighted:

Each of these plays a vital role in building 
the value of a data mesh solution, as data 
mesh is more a business philosophy than 

a pure technical concept.

3. Self-service

1. Domain orientation

4. Federated governance

2. Data as a product

5. Agility
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Domain orientation
Data is organized across domains, with clear domain own-
ership from operational sources and (optional) centralized 
data to dispositive data consumption. The examples might 
be party/client/partner domain or deposits domain in the 
banking area. Each defines its main business objects, data 
describing them, and ways the data is served, also involving 
direct owners in the process of defining the domain.

Data as a product
Data cataloging should allow discovery of the data 
by its consumers and stakeholders. APIs that operate 
on a self-service premise ensure interoperability of the 
data products. Data quality is declared in data delivery 
agreements. Data products are simply a concept, and the 
implementation of data entities and the services enabling 
them. They typically form a group of business-meaningful 
data objects that are served and operated. As an example 
of a product: Contracts in the service provider company 
would cover all business-relevant information on contract- 
ual agreements with the company’s clients, providing 
insight into the data as well as potentially manipulating 
the data. The products can be built as raw business 
semantics on the data, or they can build on other, 
more fundamental products.

The products are typically delivered and developed 
further using an agile approach, with data ownership 
and a product team established for each of them.

Data product teams typically develop the technical compo-
nents needed to extract, load, transform, store, publish, 
and disclose the data. The data is accessible by means 
of data or service contracts, and the services providing 
them operate at scale. Data consumers only need to know 
the contract and endpoint to be able to identify the client.

In existing data architectures, technical components are 
often set in stone and managed by a centralized team. 
The interaction with that team is a quintessential require-
ment. Data owners must await their support before they 
can proceed. In self-service architectures, the data owners 
can shape the products themselves, deciding how the data 
will be served and consumed.

Self-service

The data is harmonized in a centralized fashion using data 
catalogs, along with metadata management solutions for 
common discovery, consumption, and interoperability. Data 
product teams have significant freedom (within the frame-

work of central principles) to build data assets allocated in 
domains in the most efficient way, matching the specificity 
of the domain. Computational governance is in place to 
enforce the data delivery agreements. 

Federated governance

Canonical agile methodology and organization, combined 
with a set of data-specific capabilities, provide the tools 
needed to build a data mesh. DataOps provides a frame-
work for the automated and scalable dev-test-deploy of 

various data assets. Obviously, agile methodologies have 
proved useful for other, older styles; however, data mesh 
benefits directly from them, as self-service and domain 
orientation are best aligned with them.

Agility
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1.2 Architectural concepts 
that support data mesh
Data mesh as a concept is fresh, but elements of the idea 
have existed long before now, as have the tools. It is the 
assembly of the concepts that reorients the data architec-
ture towards business services and provides business 
domains with the most relevant support. The applicable 
concepts, which will be explained in the following, are:

Domain-driven design
Domain-driven design is the most fundamental underlying 
paradigm. It was formulated by Eric Evans to support mo- 
deling and implementation of business services grouped 
by specific business areas referred to as domains. For the 
data mesh, the data domain concept is often used to re-
flect the data specificity of the architecture; nevertheless, it 
is useful to maintain a holistic view on the domain as such.

Microservice architecture
As a way of deconstructing IT systems into loosely coupled 
parts that support very specific business services and can 
also be extended and scaled independently of the other 
chunks, microservice architecture allows service implemen-
tation to be specialized towards defined business services 
and to optimize its design.

Although data mesh patterns would typically benefit from 
the use of a microservice architecture, it is not a must and 
other application patterns can be considered that would 
work equally well. The main issue is to make them work 
with data mesh.

API-driven integration
This is an integration pattern that connects the application 
using high-level APIs that are typically implemented as 
RESTful services using an http protocol. Quality APIs are 
usually self-descriptive, cover a specific business area, 
and offer it as a service. They are manageable and allow 
for loose couplings between the applications and systems.

In fact, various types of APIs and API usage are conceivable 
for data mesh (see below); the one best fit for the specific 
purpose should always be used. However, RESTful API is 
one of one of the most versatile ways of communicating 
with the data or service platform.

Resource-oriented architecture
Resource-oriented architecture presents resources rather 
than behavioral APIs or services. A single resource (e.g., 
current account) exposes all the operations permitted on 
it, such as read, modify, create a new one, etc. The resource 
is typically well defined and implements a clear and rele-
vant business term.

Combining the four paradigms mentioned above allows 
for defining and creating data domains, supporting them 
with properly designed and implemented microservices, 

and publishing/consuming data through well-defined, 
business-meaningful services. All of the paradigms have 
been known for some time, while the data mesh concept 
is just a glue that allows them to cooperate to provide 
business view of the data.

Obviously other choices such as event publishing are also 
viable and can be implemented depending on the needs 
and chosen patterns. 

Domain-driven design

Microservice architecture

API-driven integration

Resource-oriented architecture
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2. Data mesh versus data 
warehouse versus data lake
Data mesh is a functional and behavioral paradigm 
that puts data consumers at the center of the architecture. 
It can be implemented in several ways, using different 
concepts for organizing source data as well as various 
integration and enablement patterns. Each of the three 
architecture styles address different business problems:

Data warehouses have been here for many years, serving 
mostly as a structured source of (largely but not exclusive-
ly) structural data, as well as data for reporting, consoli- 
dating history, sometimes keeping general ledgers, etc. 
Their premise is to centralize the data in a single source 
of truth for the organization.

Data lakes were created to enable capabilities to mass 
process, store, and categorize the unstructured high vol-
ume, velocity, and veracity of data. If the data warehouse 
pattern is typically schema on write, the data lake pattern 
is schema on read, making high data volumes available 
quickly.

Data warehouses and lakes are often combined in a 
so-called lakehouse that offers the capabilities of both. 
Although seasoned, they are not obsolete.

Data mesh, on the other hand, is all about self-service and 
decoupling enterprise data management and consumption 
into simpler and less entangled data products.

Data mesh as such is not a direct replacement of a central-
ized data source such as a data warehouse or data lake. 
There are patterns in place that allow seamless collabora-
tion between data mesh and centralized data stores, repre-
senting a single source of truth. In such a case, data mesh 
would typically be produced by a consolidated storage layer. 
Moreover, there are architectural patterns and data models 
that allow a single source of truth to be organized so that it 
automatically organizes the data into domains and enables 
easy exposure of data mesh as a prevalent consumption 
pattern.

There are 3 types of domains:

Source-oriented domain (source domain): 

Sourced from enterprise core applications

Facts and reality of business 

Immutable timed events / Historical snapshots 

Change less frequently 

Permanently captured

Consumer oriented domain (consumer domain):

Sourced from data products from source- 
oriented domain(s) or integration domain(s)

Fit for consumer purpose

Aggregation / Projection / Transformation 

Change often

Can be recreated

Integration domain: 

Sourced from data products from source- 
oriented domain(s) or consumer domain(s)

Integration over domains 

Granularity specific to consumer domains requirements

Change specific to consumer domains requirements

Can be recreated per source domain
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3. Ways of organizing and sourcing distributed data mesh

Distributed data mesh is not a fixed pattern that can 
be implemented in one canonical way. There are at 
least two dimensions in which we can make decisions 
on its sourcing:

3.1 Ways of organizing schemas 
for the distributed data mesh

Federating the development of complex data products 
does not automatically imply federating their deployment. 
In fact, a range of deployment options are available to 
organizations deploying data mesh solutions. Different 
strategies are associated with fundamentally different 
engineering trade-offs, so it is important that organizations 
frame these choices correctly and are intentional about 
their decisions.

In general terms, there are three different strategies for 
deploying schemas within a data mesh, as defined by 
vendors such as Teradata:

These are not mutually exclusive, and many 
real-world implementations use a combination 
of these approaches.

When using environments such as Teradata Vantage, 
the play is between deployment of centralized 
image(s) to host collocated domains, host individual 
domains, or use Vantage as, e.g., a data platform 
gateway to virtualized data from other platforms.

Ways of organizing data (schemas) 
and allocating/colocating it

Ways of sourcing the data for 
distributed data mesh domains

1. 

Isolation

2. 

Colocation

3. 

Connection
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3.2 Ways of sourcing or building the data mesh

Of course, the models can be combined to maximize the benefits of data mesh. The condition for a successful 
combination of the patterns is consistent federated governance spanning the entire mesh. The Teradata  
Vantage platform can be used as a technology to serve any data architecture and is not only capable of 
implementing each of these 3 models, but also works in its various parts providing sources, serve as central-
ized repository as well as implement domain repositories delivering data within its bounded context.

There are multiple patterns for building a data mesh, but three in particular deserve a closer look:

A fully independent 
model in which 
each domain is 
sourced independently

Centralized sourcing 
with materialization 
of the domain

Centralized sourcing 
with virtualization of 
the domain

Of course, variations that mix the models can and certainly are built and used.



3.3 Fully independent model
Each of the domains is logically separated, from its sourcing to consumption; however, the interoperability 
is satisfied by coherent data delivery agreements.

9 

The source domain exposes data products to the downstream domains in the form of API’s, databases and 
streams that are immutable for everything outside of the domain. The source domain can produce other data 
products too.



3.4 Sourcing from the central store 
with materialization of the domain
Domains are sourced from the central data store and are typically materialized. Less command is left in the hands of the 
data product team assigned to the domain. The central domain platform uses the data lake (nowadays mostly stored on 
native objects stores), the lakehouse and data warehouse patterns, whichever is fit for purpose to store data. The data in 
it will be aligned on a domain basis, for example in dedicated buckets/accounts/schemas. Domains get a slice of the tech-
nology stack. The concepts of source-, integration- and consumer domains are not strong here; however it is still possible 
for domains to consume data products directly from other domains. Integration domains could exist, but most of the time 
integration is done on the central data platform. Creating a separate integration domain must be done using good com-
mon sense. 

3.5 Sourcing from the central store 
with virtualization of the domain
Domains are sourced from the central data store mainly on a virtual basis. The amount of command and control in the 
data product team’s hands is similar to that of the previous pattern. A strong understanding of the centralized repository 
is needed. What goes for sourcing from the central data platform with materialization of the domain goes for this way of 
sourcing building a data mesh too. The central domain platform uses the data lake (nowadays mostly stored on native 
objects stores), the lakehouse and data warehouse patterns, whichever is fit for purpose to store data. The data in it will 
be aligned on a domain basis, for example in dedicated buckets/accounts/schemas. Domains get a slice of the technology 
stack. Virtualization tooling and/or database views support the domain model and its contexts.

The concepts of source-, integration- and consumer domains are not strong here; however it is still possible for domains 
to consume data products directly from other domains. The concepts of source-, integration- and consumer domains are 
not strong here; however it is still possible for domains to consume data products directly from other domains. Integration 
domains could exist, but most of the time integration is done on the central data platform. Creating a separate integration 
domain must be done using good common sense. 

10 
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4. How to organize the service 
landscape to implement data mesh
Data mesh is always implemented using domain- 
driven design (DDD). The business areas are divided into 
domains, and common functional and model chunks are 
closed by bounded contexts as a way to enable data mesh.  
 

Microservices and modern integration and service enable-
ment techniques usually follow, but it is DDD that lays the 
foundation for constructing a successful data mesh imple-
mentation.

There are several techniques for subdividing business 
capabilities into the domains as well as for construction 
those; however, it is fairly easy to single out a stereotype 
of the data domain.

4.1 General organization of 
architecture layers for data mesh

The domain can contain one or more bounded 
contexts. The contexts are usually self-contained but 
might overlap with other domains and subdomains.

It takes a very business- and technology-savvy team to 
properly deconstruct and design the domain, from busi-
ness services to implementation to a properly distributed 

data mesh. Once the culture and routine are there, 
however, adding the domains or deconstructing monoliths 
into the domains becomes increasingly easy.

In the properly constructed (and DDD-governed) data 
mesh solution, the rule is that only the master domain 
can change its data. Subordinate domains cannot; 
they can only read the master domain’s data. Whenever 
a subordinate domain is the master of some data, that 
domain is the only authority to change it. 

There is also a substantial difference between the concepts 
of data and business domains. The first is a provider and 
change originator for the data and data products and 
can potentially serve business domains as a data product 
provider. The second is usually a more behavioral and 
transactional concept exposing services for operations on 
the business processes and the state of business objects 
managed by the organization. Keeping that in mind, one 
can notice that the patterns/styles in fact complement 
each other.

The data domain usually 
consists of several layers:

Deep sources or operational systems that 
provide the transactional/operational data

Domain data repositories — typically 
responsible for so-called data liberalization

(Micro)services to provide the main 
functionalities enabling and operating the data

The data service layer serving data as products
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4.2 Types of APIs used for data mesh
As stated above, API-driven connectivity is one of the most 
logical choices for offering data products. We consider a 
couple popular ways to technically share the data in the 
following. The volume of data to be exchanged determines 
the use of a particular API over the others. Acquisition of 

moderate data portions makes direct APIs advantageous, 
while querying mass data will always favor direct connec-
tions to the data or bulk file extracts. Those, however, 
benefit from being initiated and controlled by API calls.
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If the company’s IT department has sufficient scale, all 
the layers can be built or set up in almost every possible 
way, including building from scratch. Most companies are, 
however, constrained by the budget, resources, and learn-
ing curve needed to master the skills to prepare all the 
layers.

If ready-made supporting platforms are used to limit 
the overhead needed to build the solution, the fol-
lowing areas of consideration should be addressed:

Ready-made platforms are available for each of the areas 
mentioned. While they do somewhat fact limit the possibil-
ities, they provide a quick starting point and platform that 
can be used directly to build and host the data mesh com-
ponents.

The next big step that is likely to emerge or may even 
already be on the horizon is data mesh as a service offered 
by significant players. There are many we could mention, 
but the Teradata Vantage platform has native connections 
to sources like native object storage, and when using Tera-
data QueryGrid, this can be extended to Apache Hive and 
Apache Spark, Oracle, and Google BigQuery. The Starburst 
Presto connector makes it possible to further extend the 
connection to a myriad of data engines through Starburst 
Presto. This makes the platform a ready-to-use solution 
offering a data mesh skeleton that can be integrated, filled 
with the data, and provided in the cloud for data clients 
to use.

5. Ways of building data 
mesh are dependent on the 
scale and resources at hand
The decision to build a data mesh requires taking the 
most pragmatic approach. There is a list of factors to 
be considered ahead of deciding how to implement it:
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6. Dos and don’ts: When (not) 
to implement data mesh 
architecture
As with every pattern, there are some limitations and 
caveats that need to be taken into consideration when 
it is used contradictory to its objectives—and without 
considering its limitations it has no chance to deliver 
on its premises. Below is a list of major points to consider:

1. Do not treat data mesh as a golden 
hammer to solve all your data problems.

2. 

Do not try to replace your data warehouse 
or data lake with data mesh if they are 
properly fulfilling their function—think 
about data mesh as an evolutionary step.

3. 

If a data mesh style is planned for 
implementation, change or evolve both 
the technology and data models and 
the organization—federated governance, 
domain deconstruction, and strict domain 
ownership are important.

4. 
Do not start with technology—technology 
is an enabler, but objectives come from 
business definitions of the domains.

5. 

Leverage modern service and deployment 
patterns such as cloud, data virtualization, 
CI/CD, etc. to fully explore deconstructed 
and additive models.



7. Teradata as a provider of 
core technology to enable 
data mesh architecture
Teradata has been around for more than 40 years 
now, providing unparallel capabilities in processing 
huge amounts of data. It is an original MPP design 
that stems from its shared-nothing architecture that 

has resolved problems with storing, selecting, and 
merging large-scale data sets. Over the years, many 
capabilities have been developed around Teradata:
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Efficient and scalable data integration tools (through 
Teradata Parallel Transporter, part of Teradata’s tools 
and utilities that come standard with Teradata Vantage)

TASM, a best-in-class workload management solution 
that allows workloads of various types (tactical, strategical, 
analytical, etc.) to be protected and makes it possible to 
meet your SLAs

A scalable cloud offering (Vantage) that allows data 
processing solutions to be easily scaled to adapt to 
varying workloads (storage and computation intensity)

A heterogenous data integration platform that allows 
various technologies to be combined into one data 
ecosystem managed from the Teradata Vantage platform

Separate storage and computing, which makes Teradata 
Vantage highly suited to adapt cloud capabilities such 
as scalability, elasticity, agility, flexibility, and efficiency 
in resource usage

Teradata connectors, among others the Teradata Kafka 
connector, which makes it possible to use Kafka to stream 
data into Vantage 

Teradata QueryGrid, which makes it possible to connect 
Vantage to a myriad of data engines and understand the 
statistics in those data engines. This allows Vantage to 
work together with those engines to determine the best 
path to your data, thus limiting resource usage

Reading and writing to native object stores (NOS) like 
AWS S3, Azure Blob, and ADLS, Google cloud storage, or 
on-prem object stores that use the AWS S3 API, making 
it possible to use this cheap storage for archiving or event 
store purposes

Bring Your Own Model, which makes it possible to score 
your models in the database and brings the processing 
to the data instead of bringing the data to the processing, 
which can be very expensive in the cloud

Running R, Python, and Java in the database, again 
bringing the processing to the data. There is no longer a 
need to move your data to your R, Python, or Java clients

A robust set of Teradata Vantage ecosystem management 
tools, including back and recovery, sandboxing, moving 
data, Vantage management, and business continuity 
management.

Teradata Vantage supports the data mesh concept in all 
three strategies:
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8. Outlook
The future is now, as numerous communities think and 
work on refining and preparing the new patterns. In the 
following, the authors speculate on the future evolution 

of the data mesh style. Some of the anticipated novelties 
are applicable to the other patterns as well and as such 
will probably be used widely.

The main predictions concern architecture/technology and 
organization/operations. The changes will be reciprocal, 
as business changes will create new requirements while, 
in turn, advancements in technology and architecture will 
enable business and operational advancements.

Data mesh and service 
mesh will converge
The two patterns will converge as data mesh will increas-
ingly support transactional and operational activities, 
while analytical data will more and more often be 
enabled through services defined as APIs or similar.

Middleware will 
support data mesh
As mentioned in the previous chapters, the enablement 
teams will be more and more fully supported by dedicated 
middleware or including data mesh pattern. Services, 
integrations, and provisioning of data domains will become 
more and more codeless.

Data mesh 
platforms as a service
Hyperscalers and traditional analytics repository providers 
will start building and advertising data mesh platforms 
offered as a service, in a similar turn of events that led 
to productized data lakes or lakehouses.

8.1 Technology
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Data virtualization as 
an enabler of data mesh
Data mesh as a pattern is a natural candidate to be ena-
bled by data virtualization tooling—for example, Teradata 
QueryGrid. It typically allows for rapid microservice-style 
deployment of data domains or domains sets. It seems 
logical that this trend will increasingly prevail.

Domain-driven 
design sophistication
Domain-driven design is a great enabler of data mesh. 
New techniques of breaking business down into domains 
and designing the domain will gain ground and DDD will 
be automatically linked with the data mesh pattern.

AI/ML will be embedded in 
data mesh
A prediction that is relevant for both data mesh and lake-
house or similar patterns assumes that AI and ML will 
be embedded in the data platform to properly match 
and translate between business and technical semantics. 
Ultimately, this would enable an AI-supported fetch of 
the results for the queries requested in business language. 
Support in the organization of data, use of semantic 
graphs, self-organizing structures, and database manage-
ment will also find their application.

8.2 Organization and operations
Organizational and operational changes will enable 
development of architectural standards and patterns. The 
process of agile methodology-driven convergence of roles 
and skillsets will continue. Analysts and data scientists will 
acquire technology proficiency, while IT-oriented individuals 
will gain more awareness and excellence in the use of 
requirements and business process analysis. The teams 
are and will continue to become multidisciplinary, typically 
organized in tribes or similar structures. Cooperation 
between topic- or domain-oriented groups should remove 
siloes in organizations, which is the main prerequisite 
for federated governance over the data and the domains.

9. Conclusion
Data mesh is a promising but already widely adopted 
pattern that allows some significant shortfalls of patterns 
used so far to be overcome. It moves the development 
closer to the owners and users of the data while retaining 
their overall business alignment through federated 
—preferably computational—governance. 

The market adopts the data mesh concept while the 
vendors of IT solutions and service providers develop 
data mesh as a service or product.

Data mesh is a style likely to coexist and integrate with 
patterns used so far such as data lakes or lakehouses.  

It is also typically a driver of organizational and operational 
changes in large organizations, leading to more efficient 
handling and processing of data.

As a company with 40 years of experience, Teradata was 
able to build a concept and products for implementing 
large-scale data mesh. Teradata Vantage and Teradata 
QueryGrid allow for every data mesh flavor to be 
implemented.

BCG Platinion and Teradata partner on projects involving 
data mesh (and other patterns), shaping and delivering 
support to data-intensive business organizations.



Jakub Fila

BCG Platinion

About the Authors

Robbert started his career as a Cobol programmer on 
the IBM MVS operating system, using the IMS-DB/DC 
database management system. After using dBase II/III/
III+ and Foxpro, he was introduced to Oracle 6.1.7 
RDBMS in 1994.

From that moment on, he got more and more involved 
in executive information systems, data warehousing, 
and business intelligence. Robbert evolved from 
developer and analyst on several projects to technical 
architect at Oracle into an enterprise data, and now to 
BI and analytics architect at Teradata. He has been a 
Teradata team member since January 2017 as he felt 
Teradata had the right business strategy and products 
to become a leading company in data management for 
business intelligence and analytics. Nowadays, Robbert 
supports Teradata’s customers and partners in devel-
oping and implementing data architectures using the 
Teradata Vantage data platform.

Jakub has a professional background as an aerospace 
engineer, first in the turbine engine industry and then 
in the nuclear industry. He is a graduate of aerospace 
engineering and physics faculties, where he also 
learned software engineering and started his interest 
in data processing and parallel programming. He has 
been working as an IT architect of various levels of 
seniority for companies such as Accenture, IBM, or 
Teradata. Jakub is now a Principal at BCG Platinion, 
helping clients to make strategic decisions and imple-
ment the right technologies to fulfill their strategy. 
He specializes in integration architecture, enterprise 
architecture, massive data processing, and software 
engineering and is an enthusiast in MPP platforms 
and efficient parallel programming techniques. Jakub 
leads the Application Architecture chapter at BCG 
Platinion in the EMESA region. His private interests 
lie in aerospace and triathlons.

18 

Robbert Naastepad

Teradata



About the Authors

Jens is an engineer to the core. He started by coding 
J2EE solutions in financial industries and evolved into 
a domain/enterprise architect over the years through 
performance measurement and optimization cases, 
which helped him to build a thorough understanding 
of traditional relational DBMS and their inner workings 
(Oracle and DB2). Moving on to strategic IT consulting 
in 2006, he explored all aspects of IT management. 
The path to data platforms was laid out in pilot cases 
on SAS around 2010 and then, from 2012 on, he took 
over the role of head of design authority capital mar-
kets at a large German bank, where he substantially 
helped set up a data hub based on data lake and 
streaming technologies that was later moved to a 
cloud native setup. After rejoining BCG Platinion in 
2019, Jens took over the Data Architecture chapter 
to extend our competences further and work on 
(cloud) data platform cases in financial industries.

Vincent is a Senior IT Architect at BCG Platinion and 
an engineer by his background and passion. Vincentis 
a key member of BCG Platinion’s Data chapter.

Vincent started his career as a software developer 
focused on Java and C#, solving data challenges in the 
middleware and backend for large-scale data process-
ing and creating data ontologies for the German gov-
ernment, as well as working on solving data challenges 
on the opposite scale in constrained environments 
on Android, where he led a development team at a 
startup for multiple years. He holds PhD in software 
engineering, majoring in automated test case 
generation. With over 10 years of development 
experience, he joined BCG Platinion as an Architect.

His main interests include massive data processing, 
software engineering, test automation, and cloud 
architecture. Vincent typically leads large data 
management projects delivering content and 
architecture concepts, and implementing and 
aligning business with IT. 

Jens Mueller

BCG Platinion

Vincent von Hof

BCG Platinion



bcgplatinion.com

https://bcgplatinion.com/

